DESIGN

SUGGESTIONS & CONSIDERATIONS

- Set design goal: Fun, Speed & Appearance
- Sketch out your design
- Build a scale model from manila paper
- Estimate materials orplan how to use what you have
- Plan out what construction technique will be used
- A box measuring 1' x 1' x 3' will float 187 lbs
- In theory: If it's big enough to hold you, it will float you
- Flat bottom, sit-to-paddle & canoe styles have been the most popular and successful designs in the past

- Long boats go fast, but are harder to turn
- Short boats (<8') are difficult to paddle straight
- Best Length: 8-12'
- Best Height: 18" (allows room to sit/kneel & still paddle over the edge)
- Best Width: 18"- 30" (max) for 2 or more people in a row
 Minimum 48" wide for 2 people side by side
- Kneeling is a "power" position but sitting is more comfortable

Basic boat styles

SUGGESTIONS

- Cover all edges and joints. Cardboard acts like a siphon
- Cardboard tubes make great frames. (Cut for joining & bending)
- Cardboard Hull: 1 or more layers, fasten & cover the seams. With 2 layers, overlap the seams & duct tape like crazy. Decorate with Latex paint (if desired).
- Reinforce the area where the crew will sit, kneel or stand
- Duct tape only non-painted surfaces (duct tape shrinks with painted)

Multiple cardboard layers "adhered" together with duct tape on the sides strengthen the hull

Multiple trapezoid-shaped pieces "adhered" together with duct tape to form a "support block"

A sheet of cardboard could be folded & "adhered" together with duct tape to form tubes/beams

STRAIGHT FOLD

TUBE CUTTING TEMPLATE

FOLD & OVERLAP CARDBOARD AROUND CORNERS

FRAMES

Solid Tube Frame

Center/Cross Beam Frame

CONNECTING TUBES

Cardboard Wrapper for Tubes End-to-End

Cardboard Wrapper for Tubes At Right-Angles

FRAME ANGLES

V-Shaped Cuts

Multiple Cuts for Sharper Angles

PHYSICS

WIDER IS STEADIER

DISPLACEMENT

HOW MUCH WILL YOU SINK?

Weight of Water = 62.4 pounds/cubic-foot

Example: Box boat, 3 ft x 6 ft tall (high)

Boat volume = 3' x 6' x 1' = $18ft^3$ Boat displacement = $18 ft^3 x 62.4 lbs/ft^3 = 1123.2 lbs$ Which equates to 93.6 lbs per inch of boat height

Water displaced (ft³) = weight-of-boat & people (lbs) $62.4 \text{ lbs/ft}^3\text{-H}_2\text{O}$

Depth (ft) boat sinks _____